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Abstract. It is widely believed that rigorous analytic number theory has begun with
Dirichlet’s ingenious proof of his theorem on primes in arithmetic progressions using what
are now known as the Dirichlet L-functions. Since then, various proofs building on Dirichlet’s
work have been discovered. Perhaps what is lesser known is an elementary proof due to A.
Selberg. The object of this expository note is to present Selberg’s original proof of Dirichlet’s
theorem. Our exposition is based on Selberg’s paper [5].

1. Introduction

Dirichlet’s theorem on primes in arithmetic progressions asserts that given any integers k, l
with k ≥ 1 and gcd(k, l) = 1, the arithmetic progression {kn+ l}∞n=1 contains infinitely many
primes. A special case of this theorem for l = 1 was stated by Euler in 1775. The general
form was first conjectured by Legendre who used it without proof in his demonstrations of
the law of quadratic reciprocity. The first proof was discovered in 1837 by Dirichlet [3, pp.
411–496] who introduced what is now known as the Dirichlet L-functions, defined by

L(s, χ) =
∞∑
n=1

χ(n)

ns

for a fixed Dirichlet character χ (mod k), which plays an analogous role to that of the
Riemann zeta function ζ(s) in Euler’s proof of the infinitude of primes. The key step is to
show that L(1, χ) 6= 0 for all nonprinciple Dirichlet characters χ (mod k), which Dirichlet
achieved with the aid of his class number formula for quadratic number fields. Dirichlet’s
work marks the beginning of analytic number theory, and Dirichlet himself was commonly
considered as the founder of this branch of mathematics. Since then, various proofs have
been discovered, and the proof given by de la Vallée Poussin [2] is arguably one of the
most satisfactory ones. One important feature of this proof is that unlike Dirichlet’s original
proof, it uses the theory of complex analytic functions and does not resort to Dirichlet’s class
number formula. In 1940 Selberg [5] gave an elementary proof of Dirichlet’s theorem that
avoids dealing with Dirichlet L-functions and involves only considerations of real characters.
In fact, his method allowed him to prove the following quantitative result.

Theorem 1.1. Let k, l be integers with k ≥ 1 and gcd(k, l) = 1. Then there exists a positive
real number x0 depending only on k such that the inequality∑

p≤x
p≡l (mod k)

log p

p
>

log x

204ϕ(k)6

holds for all x > x0, where ϕ is Euler’s totient function.
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Before Selberg’s proof, many mathematicians, including famously G. H. Hardy, were skep-
tical that a proof without analyzing the properties of Dirichlet L-functions could ever be
found. To the author’s knowledge, however, Selberg’s proof is lesser known to the math
community compared to its analytic counterparts. In the present paper, we give a thorough
exposition of Selberg’s original proof of Theorem 1.1 following his paper [5].

2. Preliminary Lemmas

In this section, we collect some preliminary results needed for the proof of Theorem 1.1.
Lemmas 2.1 and 2.2 below summarize the main results that Selberg proved in Section 2 of his
paper [5]. A weaker version of Lemma 2.3 is stated without proof in [5]. The proof presented
here was found by the author hismelf. Lemmas 2.4 and 2.5 correspond to Lemmas 1 and 2 in
[5], respectively, and we shall present here a detailed proof of the former following Selberg’s
argument but with some adaptations. Among these results, Lemma 2.2 is perhaps the most
crucial part of Selberg’s ingenious proof of Theorem 1.1. Though completely elementary,
the proof of this lemma is rather intricate, which contributes to the complexity of Selberg’s
proof of Dirichlet’s theorem compared to proofs that take advantage of the power of complex
analysis. It is noteworthy that the fundamental ideas in the proof also appeared in Selberg’s
ingenious elementary proof of the prime number theorem [6].

In what follows, let R be the set of real numbers, R+ the set of positive real numbers,
Z the set of integers, N+ the set of positive integers, and P the set of prime numbers. For
any x ∈ R, For any x ∈ R, we denote by bxc the integer part of x and by dxe the least
integer greater than or equal to x. We shall also reserve the letters p, q, r for primes. Let
π(x) denote the number of primes up to x ∈ R+. Then

π(x) = O

(
x

log x

)
for large x by Chebyshev’s estimate [4, Theorem 7]. A standard result [4, Theorem 425] in
prime number theory states that ∑

p≤x

log p

p
= log x+O(1). (2.1)

By partial summation and induction we obtain∑
p≤x

(log p)m

p
=

1

m
(log x)m +O((log x)m−1) (2.2)

for all m ∈ N+. Let Λ(n) be the von Mangoldt function. It is well known that

Λ(n) = −
∑
d|n

µ(d) log d, (2.3)

where µ is the Möbius function. Let us write

θ(x) :=
∑
p≤x

log p,

ψ(x) :=
∑
n≤x

Λ(n) =
∑
pα≤x

log p.
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Then we have θ(x) = O(x) and ψ(x) = O(x) [4, Theorem 414]. It follows by partial
summation that∑

p≤x

log p log
x

p
= θ(x) log x−

∑
p≤x

(log p)2 =

∫ x

1

θ(t)

t
dt = O(x). (2.4)

By (2.2) we have∑
p≤y

log p

p
log

x

p
= log x log y − 1

2
(log y)2 +O(log x), (2.5)

∑
p≤y

log p

p

(
log

x

p

)2

= (log x)2 log y − log x(log y)2 +
1

3
(log y)3 +O((log x)2), (2.6)

where 1 ≤ y ≤ x. We shall also make use of the identities∑
n≤x

log n = x log x− x+O(log x), (2.7)

∑
n≤x

n log n =
x2

2
log x− x2

4
+O(x log x). (2.8)

Another useful estimate [4, Theorem 423] we shall need is∑
n≤x

(
log

x

n

)h
= O(x) (2.9)

for any h ∈ R+.

Lemma 2.1. For n ∈ N+ and x ∈ R+, let

λn(x) := µ(n)
(

log
x

n

)2

,

Λ2,n(x) :=
∑
d|n

λd(x).

Then

Λ2,n(x) =


(log x)2 if n = 1,

log p log(x2/p) if n = pα,

2 log p log q if n = pαqβ,

0 otherwise.

Proof. Let

δ(n) :=
∑
d|n

µ(d) =

{
1 if n = 1,

0 otherwise.

By (2.3) we have

Λ2,n(x) =
∑
d|n

µ(d)
(

log
x

d

)2

= δ(n)(log x)2 + 2Λ(n) log x+ f(n),
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where

f(n) =
∑
d|n

µ(d)(log d)2.

If gcd(n1, n2) = 1, then

f(n1n2) =
∑

d1|n1, d2|n2

µ(d1)µ(d2)(log d1 + log d2)2 = δ(n1)f(n2) + δ(n2)f(n1) + 2Λ(n1)Λ(n2).

From this it follows that f(n) = 0 if n has at least 3 distinct prime factors. Thus the same
holds for Λ2,n(x). The remaining cases where n has at most 2 distinct prime factors can be
verified easily using the definition of Λ2,n(x). �

Remark. In prime number theory, the m-th von Mangoldt function Λm is defined by

Λm(n) :=
∑
d|n

µ(d)
(

log
n

d

)m
,

where m ≥ 0. Thus δ(n) = Λ0(n), Λ(n) = Λ1(n), and Λ2,n(n) = Λ2(n). It is not hard to
show that Λm(n) ≥ 0, Λm(n) = 0 if n has more than m distinct prime factors and that

Λm(n) = m!
∏
p|n

log p

if n is the product of m distinct primes. More generally, let f : N+ → C be an additive
function, i.e., an arithmetic function with the property that f(n1n2) = f(n1) + f(n2) for all
n1, n2 ∈ N+ with gcd(n1, n2) = 1. For every integer m ≥ 0, we define

Fm(n) :=
∑
d|n

µ(d)f(d)m,

Gm(n) :=
∑
d|n

µ(d)f
(n
d

)m
.

Then F0(n) = G0(n) = δ(n). For any n1, n2 ∈ N+ with gcd(n1, n2) = 1, we have

Fm(n1n2) =
m∑
k=0

(
m

k

)
Fm−k(n1)Fk(n2),

Gm(n1n2) =
m∑
k=0

(
m

k

)
Gm−k(n1)Gk(n2).

By induction, one can show that Fm(n) = Gm(n) = 0 if n has more than m distinct prime
factors and that

Fm(n) = m!
∏
p|n

F1(pvp) = (−1)mm!
∏
p|n

f(p),

Gm(n) = m!
∏
p|n

G1(pvp) = m!
∏
p|n

(
f(pvp)− f(pvp−1)

)
,

whenever n has precisely m distinct prime divisors, where vp is the exponent of p in n.
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Lemma 2.2. Let k ∈ N+. For x ∈ R+ and a ∈ Z, define

Qa(x) :=
1

log x

∑
p≤x

p≡a (mod k)

log p

p
.

Then there exists x1 = x1(k) such that for all x > x1 and a ∈ Z with gcd(a, k) = 1, we have

Qa(x) ≥ 1

10ϕ(k)
− 1

9

k∑
m1,m2=1

m1m2≡a (mod k)

Qm1(
3
√
x)Qm2(

3
√
x), (2.10)

Qa(x) ≥ 2

27

k∑
m1,m2,m3=1

m1m2m3≡a (mod k)

Qm1(
3
√
x)Qm2(

3
√
x)Qm3(

3
√
x) +O

(
1

log x

)
. (2.11)

Proof. Let a ∈ Z be an arbitrary integer coprime to k. By Lemma 2.1 we have∑
n≤x

n≡a (mod k)

Λ2,n(x) =
∑
pα≤x

pα≡a (mod k)

log p log
x2

p
+

∑
pαqβ≤x

pαqβ≡a (mod k)

log p log q +O((log x)2).

By (2.4) we have∑
p≤x

p≡a (mod k)

log p log
x2

p
=

∑
p≤x

p≡a (mod k)

(log p)2 + 2
∑
p≤x

p≡a (mod k)

log p log
x

p
=

∑
p≤x

p≡a (mod k)

(log p)2 +O(x).

Note that∑
pα≤x, α≥2
pα≡a (mod k)

log p log
x2

p
≤ 2 log x

∑
pα≤x
α≥2

log p� (log x)2
∑
p≤
√
x

1�
√
x log x,

∑
pαqβ≤x, α≥2
pαqβ≡a (mod k)

log p log q ≤
∑
pα≤x
α≥2

log p
∑

qβ≤x/pα
log q � x

∑
pα≤x
α≥2

log p

pα
� x

∑
p

log p

p(p− 1)
� x.

Thus we have ∑
n≤x

n≡a (mod k)

Λ2,n(x) =
∑
p≤x

p≡a (mod k)

(log p)2 +
∑
pq≤x

pq≡a (mod k)

log p log q +O(x). (2.12)

On the other hand, we see that∑
n≤x

n≡a (mod k)

Λ2,n(x) =
∑
d≤x

gcd(d,k)=1

λd(x)
∑
m≤x/d

md≡a (mod k)

1 =
x

k

∑
d≤x

gcd(d,k)=1

λd(x)

d
+O

(∑
d≤x

|λd(x)|

)
.

By (2.9) we have ∑
d≤x

|λd(x)| ≤
∑
d≤x

(
log

x

d

)2

= O(x).
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It follows that ∑
n≤x

n≡a (mod k)

Λ2,n(x) =
x

k

∑
d≤x

gcd(d,k)=1

λd(x)

d
+O(x).

Combining this with (2.12) we obtain∑
p≤x

p≡a (mod k)

(log p)2 +
∑
pq≤x

pq≡a (mod k)

log p log q =
x

k

∑
d≤x

gcd(d,k)=1

λd(x)

d
+O(x). (2.13)

Note that

k∑
b=1

gcd(b,k)>1

∑
p≤x

p≡b (mod k)

(log p)2 ≤
∑
p≤x

(log p)2

k∑
b=1
p|b

1 ≤ k
∑
p≤x

(log p)2

p
= O((log x)2)

by (2.2) and

k∑
b=1

gcd(b,k)>1

∑
pq≤x

pq≡b (mod k)

log p log q ≤ 2
∑
pq≤x

log p log q
k∑
b=1
p|b

1

≤ 2k
∑
p≤x

log p

p

∑
q≤x/p

log q

� x
∑
p≤x

log p

p2

� x.

Since the right-hand side of (2.13) does not depend on a, we have∑
p≤x

p≡a (mod k)

(log p)2 +
∑
pq≤x

pq≡a (mod k)

log p log q =
1

ϕ(k)

(∑
p≤x

(log p)2 +
∑
pq≤x

log p log q

)
+O(x).

By partial summation we have∑
p≤x

p≡a (mod k)

(log p)2

p
=

1

x

∑
p≤x

p≡a (mod k)

(log p)2 +

∫ x

1

∑
p≤t

p≡a (mod k)

(log p)2 · 1

t2
dt,

∑
pq≤x

pq≡a (mod k)

log p log q

pq
=

1

x

∑
pq≤x

pq≡a (mod k)

log p log q +

∫ x

1

∑
pq≤t

pq≡a (mod k)

log p log q · 1

t2
dt.

Adding up these two identities and using partial summation again, we obtain∑
p≤x

p≡a (mod k)

(log p)2

p
+

∑
pq≤x

pq≡a (mod k)

log p log q

pq
=

1

ϕ(k)

(∑
p≤x

(log p)2

p
+
∑
pq≤x

log p log q

pq

)
+O(log x).
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By (2.2) we have ∑
pq≤x

log p log q

pq
=
∑
p≤x

log p

p

∑
q≤x/p

log q

q

=
∑
p≤x

log p

p
log

x

p
+O(log x)

= (log x)2 −
∑
p≤x

(log p)2

p
+O(log x).

It follows that

A(x; a) :=
∑
p≤x

p≡a (mod k)

(log p)2

p
+

∑
pq≤x

pq≡a (mod k)

log p log q

pq
=

1

ϕ(k)
(log x)2 +O(log x). (2.14)

Now we deduce from (2.14) that∑
p≤x

p≡a (mod k)

(log p)2

p
≤ 1

ϕ(k)
(log x)2 +O(log x),

from which it follows by partial summation that∑
p≤x

p≡a (mod k)

log p

p
≤ 2

ϕ(k)
log x+O(log log x). (2.15)

This together with (2.5) implies∑
3√x<p≤x

log p

p

∑
q≤x/p

q≡p̄a (mod k)

log q

q
≤ 2

ϕ(k)

∑
3√x<p≤x

log p

p
log

x

p
+O(log x log log x)

≤ 4

9ϕ(k)
(log x)2 +O(log x log log x).

Thus we have∑
pq≤x

pq≡a (mod k)

log p log q

pq
≤

∑
p,q≤ 3√x

pq≡a (mod k)

log p log q

pq
+ 2

∑
3√x<p≤x

log p

p

∑
q≤x/p

q≡p̄a (mod k)

log q

q

≤
∑

p,q≤ 3√x
pq≡a (mod k)

log p log q

pq
+

8

9ϕ(k)
(log x)2 +O(log x log log x).

Inserting this in (2.14) we obtain∑
p≤x

p≡a (mod k)

(log p)2

p
≥ 1

9ϕ(k)
(log x)2 −

∑
p,q≤ 3√x

pq≡a (mod k)

log p log q

pq
+O(log x log log x).
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Thus there exists x1 = x1(k) such that

Qa(x) >
1

10ϕ(k)
− 1

(log x)2

∑
p,q≤ 3√x

pq≡a (mod k)

log p log q

pq

=
1

10ϕ(k)
− 1

9

k∑
m1,m2=1

m1m2≡a (mod k)

Qm1(
3
√
x)Qm2(

3
√
x)

for all x > x1. This establishes (2.10).
Now by (2.14) and partial summation we have∑

p≤x
p≡a (mod k)

(log p)3

p
+

∑
pq≤x

pq≡a (mod k)

log p log q

pq
log pq = A(x; a) log x−

∫ x

1

A(t; a)

t
dt

=
2

3ϕ(k)
(log x)3 +O((log x)2).

Note that∑
pq≤x

pq≡a (mod k)

log p log q

pq
log pq = 2

∑
pq≤x

pq≡a (mod k)

log p(log q)2

pq
= 2

∑
p≤x
p|k

log p

p

∑
q≤x/p

q≡p̄a (mod k)

(log q)2

q
,

where p̄ is an integer such that pp̄ ≡ 1 (mod k). By (2.14) we have∑
q≤x/p

q≡p̄a (mod k)

(log q)2

q
= A(x/p; p̄a)−

∑
qr≤x

qr≡p̄a (mod k)

log q log r

qr
+O(log x).

Since∑
p≤x
p|k

log p

p
A(x/p; p̄a) =

1

ϕ(k)

∑
p≤x

log p

p

(
log

x

p

)2

+O((log x)2) =
1

3ϕ(k)
+O((log x)2)

by (2.6), we have∑
pq≤x

pq≡a (mod k)

log p log q

pq
log pq =

2

3ϕ(k)
(log x)3 − 2

∑
pqr≤x

pqr≡a (mod k)

log p log q log r

pqr
+O((log x)2).

Hence we have ∑
p≤x

p≡a (mod k)

(log p)3

p
= 2

∑
pqr≤x

pqr≡a (mod k)

log p log q log r

pqr
+O((log x)2).
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It follows that

Qa(x) ≥ 2

(log x)3

∑
p,q,r≤ 3√x

pqr≡a (mod k)

log p log q log r

pqr
+O

(
1

log x

)

=
2

27

k∑
m1,m2,m3=1

m1m2m3≡a (mod k)

Qm1(
3
√
x)Qm2(

3
√
x)Qm3(

3
√
x) +O

(
1

log x

)
.

This proves (2.11). �

Lemma 2.3. Let k ∈ N+ and χ a real nonprinciple character modulo k. Then there exists
D ∈ Z which is not a perfect square, such that |D| < k2, 16 - D, p3 - D for all odd p ∈ P,
D 6≡ −1 (mod 8), and

χ(p) =

(
D

p

)
for all p ∈ P, where ( ·· ) is the Kronecker symbol. Furthermore, if

P :=
∏

(u,v)∈E

|u2 −Dv2|,

where
E :=

{
(u, v) ∈ Z2 \ {(0, 0)} : |u| ≤

√
x/2, |v| ≤

√
x/(2|D|)

}
,

then

logP ≥ 5x

4
√
|D|

log x+O(x)

for sufficiently large x ∈ R+.

Proof. Suppose that χ is induced by a real primitive character χ1 (mod k1), where k1 > 1 is
a divisor of k. Then χ1(n) = (d/n) for some d = 2αm with |d| = k1, where 0 ≤ α ≤ 3 and
m is odd and square-free with the property that m ≡ 1 (mod 4) if α = 0 (see for instance
[1, §5]). Let D := dd′, where

d′ :=
∏

q|k, q-k1

q2.

Then D is not a perfect square, |D| < k2, 16 - D, p3 - D for all odd p ∈ P, and D 6≡
−1 (mod 8). Moreover, we have(

d

p

)
= χ1(p)

(
d′

p

)
= χ(p)

for all p ∈ P, since χ1(n) = χ(n) whenever gcd(n, k) = 1 and(
d′

p

)
=

{
1 if p - d′,
0 otherwise.

We now estimate logP . Let E+ := E ∩ N2
+. Then∑

(u,v)∈E+

log |u2 − |D|v2| ≥
∑

(u,v)∈E+∣∣∣u−√|D|v∣∣∣≥1

log
(
u+

√
|D|v

)
+

∑
(u,v)∈E+∣∣∣u−√|D|v∣∣∣≥1

log
∣∣∣u−√|D|v∣∣∣ .
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Since ∑
(u,v)∈E+∣∣∣u−√|D|v∣∣∣<1

log
(
u+

√
|D|v

)
�
∑
u≤
√
x

∑
u−1√
|D|

<v< u+1√
|D|

log x�
√
x log x,

we have by (2.7) that∑
(u,v)∈E+∣∣∣u−√|D|v∣∣∣≥1

log
(
u+

√
|D|v

)
=

∑
(u,v)∈E+

log
(
u+

√
|D|v

)
+O(

√
x log x)

≥
∑

u≤
√
x/2

⌊√
x

2|D|

⌋
log u+O(

√
x log x)

=

√
x

2|D|
∑

u≤
√
x/2

log u+O(
√
x log x)

=
x

4
√
|D|

log x+O(x).

On the other hand, we have by (2.7) and (2.8) that∑
(u,v)∈E+∣∣∣u−√|D|v∣∣∣≥1

log
∣∣∣u−√|D|v∣∣∣ ≥ ∑

2
√
|D|≤u≤

√
x/2

∑
v≤ u

2
√
|D|

log
u

2

=
1

2
√
|D|

∑
2
√
|D|≤u≤

√
x/2

u log
u

2
+O(

√
x log x)

=
1

2
√
|D|

∑
u≤
√
x/2

u log u+O(x)

=
x

16
√
|D|

log x+O(x).

Hence we have ∑
(u,v)∈E+

log |u2 − |D|v2| ≥ 5x

16
√
|D|

log x+O(x).

Finally, we see that ∑
0<|u|≤

√
x/2

log u2 �
√
x log x,

∑
0<|v|≤

√
x/(2|D|)

log |D|v2 �
√
x log x.
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It follows that

logP = 4
∑

(u,v)∈E+

log |u2 − |D|v2|+
∑

0<|u|≤
√
x/2

log u2 +
∑

0<|v|≤
√
x/(2|D|)

log |D|v2

≥ 5x

4
√
|D|

log x+O(x)

for sufficiently large x > 0. �

Lemma 2.4. Let k ∈ N+ and let χ be a real nonprinciple character modulo k. Then there
exists x2 = x2(k) such that ∑

p≤x
χ(p)=1

log p

p
>

1

4
log x

for all x > x2.

Proof. By Lemma 2.3, there exists D ∈ Z which is not a perfect square, such that |D| < k2,
p4 - D for all p ∈ P, D 6≡ −1 (mod 8), and χ(p) = (D/p) for all p ∈ P. Let p ∈ P be an odd
prime and let α ∈ N+. Put ep(x) := blog x/ log pc. Consider the solutions (u, v) ∈ E to the
congruence equation

u2 −Dv2 ≡ 0 (mod pα), (2.16)

where E is the set defined in Lemma 2.3. In order for (2.16) to have a solution (u, v) ∈ E,
we may assume p ≤ x and α ≤ ep(x), since 0 < |u2 − Dv2| ≤ x. We now estimate the
number of solutions (u, v) ∈ E to (2.16), which will allow us to estimate the highest power
of p dividing the number P defined in Lemma 2.3.

If (D/p) = −1, then p ≥ 3 and any solution (u, v) ∈ E to (2.16) must satisfy pβ | u and
pβ | v for some β ∈ N+ with β ≥ α/2. Hence the number of pairs (u, v) ∈ E for which (2.16)
holds is at most O(x/pα) for even α and at most O(x/pα+1) for odd α. Thus the highest
power of p dividing P is less than

2
∞∑
m=1

x

p2m
=

2x

p2 − 1
= O

(
x

p2

)
.

Consider now the case (D/p) = 1. For sufficiently large x, there exists a primitive solution
(u0, v0) ∈ E to (2.16), namely, a solution satisfying p - u0v0. If (u, v) ∈ E is any solution to
(2.16), then we have

v0u± u0v ≡ 0 (mod pα). (2.17)

The number of choices for (u, v) ∈ E for which (2.17) holds is at most

2

(
2
√
x/2

pα
+O(1)

)(
2

√
x

2|D|
+O(1)

)
=

4x

pα
√
|D|

+O(
√
x).

Thus the highest power of p dividing P is at most

ep(x)∑
m=1

(
4x

pm
√
|D|

+O(
√
x)

)
≤ 4x

(p− 1)
√
|D|

+O

(√
x log x

log p

)
.
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If p >
√

2x, then α = 1. Moreover, for each m ∈ Z, there are at most two pairs (u, v) ∈ E
satisfying the equation

v0u± u0v = mp,

since p > 2
√
x/2. Note that

|m| = |v0u± u0v|
p

≤ x

p
√
|D|

.

Thus there are at most

2

(
2x

p
√
|D|

+ 1

)
=

4x

p
√
|D|

+O(1)

choices for (u, v) ∈ E that satisfy (2.17). This implies that when p >
√

2x, the highest power
of p dividing P is at most

4x

p
√
|D|

+O(1).

If (D/p) = 0, then p | D. Suppose that pβ ‖ D. Then 1 ≤ β ≤ 3. If β = 1, then any
solution (u, v) ∈ E to (2.16) satisfy the condition pdα/2e | u and pbα/2c | v. It follows that
the number of pairs (u, v) ∈ E for which (2.16) holds is at most O(x/pα). Hence the highest
power of p dividing P is less than

∞∑
m=1

x

pm
=

x

p− 1
= O

(
x

p

)
.

Suppose now that β = 3. Then for any solution (u, v) ∈ E to (2.16), we have p | u if α = 1
and pdα/2e | u and pbα/2c−1 | v if α ≥ 2. Thus the highest power of p dividing P is less than

x

p
+
∞∑
m=2

x

pm−1
= O

(
x

p

)
.

Consider now the case β = 2. If (u, v) ∈ E is a solution to (2.16), then p | u. This implies
that if α ∈ {1, 2}, then the number of pairs (u, v) ∈ E satisfying (2.16) is at most O(x/p).

Suppose now that α ≥ 3. Writing D = p2D′ and u = pu′, we have |u′| ≤
√
x/2/p and

u′2 −D′v2 ≡ 0 (mod pα−2).

By the same argument, we see that the highest power of p dividing P is at most O(x/p3) if
(D′/p) = −1 and at most O(x/p2) if (D′/p) = 1.

Collecting the results we just proved, we have

logP ≤ 4x√
|D|

∑
p≤
√

2x
χ(p)=1

log p

p− 1
+

4x√
|D|

∑
√

2x<p≤x
χ(p)=1

log p

p
+R(x),

where

R(x) = O
(√

x log x · π(
√

2x)
)

+O(x) +O

(
x
∑
p≤x

log p

p2

)
+O

x∑
p|D

log p

p

 = O(x).
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Since ∑
p≤
√

2x
χ(p)=1

log p

p− 1
=
∑
p≤
√

2x
χ(p)=1

log p

p
+O

(∑
p≤x

log p

p(p− 1)

)
=
∑
p≤
√

2x
χ(p)=1

log p

p
+O(1),

we obtain

logP ≤ 4x√
|D|

∑
p≤x

χ(p)=1

log p

p
+O(x).

Combining this with Lemma 2.3 gives

4x√
|D|

∑
p≤x

χ(p)=1

log p

p
≥ 5x

4
√
|D|

log x+O(x).

This implies ∑
p≤x

χ(p)=1

log p

p
≥ 5

16
log x+O(1)

Hence there exists x2 = x2(k) such that∑
p≤x

χ(p)=1

log p

p
>

1

4
log x

for all x > x2. �

Lemma 2.5. Let k ∈ N+ and H a subset of G := (Z/kZ)× with #H = h ≥ ϕ(k)/2. Suppose
that to every real nonprinciple character χ modulo k, there exists m ∈ H with χ(m) = 1.
Let l ∈ G, and suppose that there exists a pair (m,m′) ∈ H2 for which mm′ = l. Then there
exists a triple (m1,m2,m3) ∈ H3 for which m1m2m3 = l.

Proof. Assume to the contrary that m1m2m3 6= l for all (m1,m2,m3) ∈ H3. Then m1m2 6=
lm−1

3 for all (m1,m2,m3) ∈ H3. Since {m1m2}m1,m2∈H contains h′ ≥ h distinct elements in
G and {lm−1

3 }m3∈H contains precisely h distinct elements in G, we get at least h′+h distinct
elements in G. Thus h′ + h ≤ ϕ(k). Since h ≥ ϕ(k)/2, we have h′ = h = ϕ(k)/2.

Now fix m0 ∈ H and let K := m−1
0 H. If m1,m2 ∈ H, then there exists m3 ∈ H for which

m0m1 = m2m3 holds in G, since h′ = h implies {m2m}m∈H = {mm′}m,m′∈H . It follows that

(m−1
0 m1)(m−1

0 m2)−1 = m1m
−1
2 = m−1

0 m3 ∈ K.

This shows that K is a subgroup of G. Now we define χ : G → R by χ(n) = 1 for all
n ∈ K and χ(n) = −1 for all n ∈ G \K. Note that if n ∈ G \K, then {nn′}n′∈K = G \K
and thus {nn′}n′∈G\K = K. Using this we see that χ defines a real nonprinciple character
modulo k satisfying χ(m) = χ(m0) for all m ∈ H. Since 1 ∈ χ(H), we have χ(m) = 1 for
all m ∈ H. Thus H ⊆ K. Since #K = #H = h, we have H = K. On the other hand, we
can find (m,m′) ∈ H2 for which mm′ = l. This implies that χ(l) = χ(m)χ(m′) = 1. Hence
l ∈ K = H. As a consequence, we have 1 · 1 · l = l with 1, l ∈ H, a contradiction. �
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3. Proof of Theorem 1.1

We are now ready to prove Theorem 1.1 stated in Section 1. Let us fix k ∈ N+. We need to
prove that there exists x0 = x0(k) such that for all x > x0 and any l ∈ Z with gcd(k, l) = 1,
we have

Ql(x) >
1

204ϕ(k)6
.

We need only to prove this for all sufficiently large x for which

Ql(x) <
1

30ϕ(k)
. (3.1)

Let

Hx := #

{
1 ≤ m ≤ k : gcd(m, k) = 1 and Qm( 3

√
x) >

1

20ϕ(k)2

}
and hx := #Hx. Observe that

k∑
m=1

gcd(m,k)=1

Qm( 3
√
x) =

k∑
m=1

Qm( 3
√
x) +O

(
1

log x

)
= 1 +O

(
1

log x

)

by (2.1). By (2.15) we have

Qm(x) ≤ 2

ϕ(k)
+O

(
log log x

log x

)
(3.2)

for any m ∈ Z with gcd(m, k) = 1. It follows that

1 +O

(
1

log x

)
≤ 2hx
ϕ(k)

+
ϕ(k)− hx
20ϕ(k)2

+O

(
log log x

log x

)
,

which implies

hx ≥
ϕ(k)

2
· 40ϕ(k)− 2

40ϕ(k)− 1
+O

(
log log x

log x

)
.

Since hx ∈ Z and

ϕ(k)

2
· 40ϕ(k)− 2

40ϕ(k)− 1
=
ϕ(k)

2

(
1− 1

40ϕ(k)− 1

)
>
ϕ(k)

2

(
1− 1

2ϕ(k)

)
=
ϕ(k)− 1/2

2
,

we have hx ≥ ϕ(k)/2 for all sufficiently large x. On the other hand, it follows from Lemma
2.4 that for any real nonprinciple character χ (mod k), we have

k∑
m=1

χ(m)=1

Qm( 3
√
x) =

1

log 3
√
x

∑
p≤ 3√x
χ(p)=1

log p

p
>

1

9

for all sufficiently large x. Thus for every sufficiently large x, there exists 1 ≤ m0 =
m0(k, x) ≤ k with χ(m0) = 1 such that

Qm0(
3
√
x) >

1

18ϕ(k)
.
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By (2.10) we have

k∑
m1,m2=1

m1m2≡l (mod k)

Qm1(
3
√
x)Qm2(

3
√
x) ≥ 1

10ϕ(k)
−Ql(

3
√
x) >

1

15ϕ(k)

for all sufficiently large x for which (3.1) holds. Hence for every such x, there exists a pair
(m1,m2) depending only on k and x with m1m2 ≡ l (mod k) such that

Qm1(
3
√
x)Qm2(

3
√
x) >

1

15ϕ(k)
.

From (3.2) it follows that

Qm1(
3
√
x), Qm2(

3
√
x) >

1

31ϕ(k)
>

1

20ϕ(k)2
.

We have thus proved that for every sufficiently large x satisfying (3.1), the set Hx satisfies
the conditions of Lemma 2.5. Hence there exists (m3,m4,m5) ∈ H3

x for which m3m4m5 ≡
l (mod k). It follows from (2.11) that

Ql(x) ≥ 2

27
Qm3(

3
√
x)Qm4(

3
√
x)Qm5(

3
√
x) +O

(
1

log x

)
>

1

204ϕ(k)6
.

This completes the proof of Theorem 1.1.
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